муниципальное бюджетное общеобразовательное учреждение «Школа №73» городского округа Самара

Адрес: г. Самара, ул. Майская, 47, тел. 933-21-58

«PACCMOTPEHO»

на заседании МО учителей естественно-научного цикла

Руководитель МО

<u>Ч</u>уг/Чижова И.Ю.

протокол № <u>4</u> «*12* » 08

2020_Γ

«ПРОВЕРЕНО»

Зам. директора по УВР МБОУ Школы № 73

Глущенко Т.А.

18» 08 2020r.

«УТВЕРЖДАЮ»

Директор

МБОУ Школы № 73 г.о.Самара

Дрожджа Н. Б.

Приказ № 10-09 «17» 08 2020г.

РАБОЧАЯ ПРОГРАММА

по химии

Уровень программы среднее общее образование

10-11 класс

(углубленный уровень)

Программа: Химия. Углубленный уровень. 10-11 классы: рабочая программа к линии УМК В.В. Лунина: учебно-методическое пособие / Еремин В.В., Дроздов А.А. и др. – М.: Дрофа, 2017.

Предметная линия учебников:

- 1. Еремин В. В., Кузьменко Н. Е., Теренин В. И., Дроздов А. А., Лунин В. В. Химия 10 класс (углубленный уровень). М.: Дрофа, 2019.
- 2. Еремин В. В., Кузьменко Н. Е., Дроздов А. А., Лунин В. В. Химия 11 класс (углубленный уровень). М.: Дрофа, 2019.

Составитель: Назарова А.А.

Обсуждено

на педагогическом совете школы

протокол № -

OT « 18» 08 20 ZQ.

Самара, 2020

1. Планируемые результаты освоения учебного предмета, курса

ФГОС среднего общего образования устанавливает требования к результатам освоения учебного предмета: личностным, метапредметным, предметным.

10 класс

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

- 1. Российская гражданская идентичность, патриотизм, уважение к своему народу, чувства ответственности перед родиной, гордость за свой край, свою родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн);
- 2. Твёрдые взгляды и убеждения, принципы поведения и деятельности через содержание изучаемых предметов;
- 3. Понимание важности служения отечеству;
- 4. Демонстрация признаков мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанной на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 5. Демонстрация признаков саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность к самостоятельной, творческой и ответственной деятельности;
- 6. Готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения, понимать отрицательные стороны экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;
- 7. Коммуникативная деятельность в проектной деятельности;
- 8. Нравственное поведение в школе;
- 9. Демонстрация целенаправленной образовательной деятельности, в т.ч. Самообразования;
- 10. Демонстрация эстетического отношения к миру в рамках урочной и внеурочной деятельности;
- 11. Соблюдение правил здорового образа жизни, отсутствие вредных привычек;
- 12. Бережное отношение к своему здоровью, умение оказывать первую помощь;
- 13. Ориентирование в мире профессий, проектирование собственных жизненных планов;
- 14. Демонстрация экологического мышления через поведение, знание о влиянии социальноэкономических процессов на состояние природной и социальной среды;
- 15. Демонстрация понимания и принятия ценностей семейной жизни.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Регулятивные УУД:

- 1. Определять цель деятельности в сотрудничестве с тьютором;
- 2. Самостоятельно или в сотрудничестве с тьютором составлять план деятельности по предложенному алгоритму или выбрать из предложенных вариантов;
- 3. Действовать по составленному плану;
- 4. Контролировать деятельность под руководством тьютора;
- 5. Осуществлять отбор наиболее эффективных способов деятельности в процессе реализации деятельности;
- 6. Находить все возможные ресурсы для достижения поставленных целей и учиться их использовать;
- 7. Реализовывать план действий под руководством тьютора;
- 8. Определять успешные стратегии в различных ситуациях;
- 9. Оценивать и определять стратегию поведения с учетом гражданских и нравственных ценностей;
- 10. Осуществлять познавательную рефлексию деятельности, знания и незнания.

Познавательные УУД:

- 1. Овладение навыками познавательной, учебной, проектной деятельности;
- 2. Овладение навыками разрешения проблем;
- 3. Умение самостоятельного поиска методов решения практических задач;
- 4. Умение самостоятельной информационно-познавательной деятельности применения различных методов познания;
- 5. Овладение навыками получения необходимой информации из различных источников (ориентироваться в информации, получать информацию из словарей, энциклопедий, художественных и публицистических текстов);
- 6. Развитие навыков критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 7. Умение определять назначение и функции различных социальных институтов в сотрудничестве с педагогом.

Коммуникативные УУД:

- 1. Умение организовывать социальное сотрудничество с целью взаимного обогащения;
- 2. Умение максимально учитывать интересы сторон;
- 3. Умение отбирать наиболее эффективные икт для решения конкретных задач (когнитивные, коммуникативные, организационные) из предложенного выбора;
- 4. Использование знаний эргономики, техники безопасности, гигиены и других на практике;

5. Умение самостоятельно отбирать эффективные языковые средства для ясного, логичного и точного изложения своей точки зрения.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Выпускник научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между химией и другими естественными науками;
- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- анализировать состав, строение и свойства веществ, применяя положения основных химических теорий: химического строения органических соединений А.М. Бутлерова, строения атома, химической связи, электролитической диссоциации кислот и оснований;
- устанавливать причинно-следственные связи между свойствами вещества и его составом, и строением;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- характеризовать физические свойства органических веществ и устанавливать зависимость физических свойств веществ от типа кристаллической решетки;
- приводить примеры органических веществ изученных классов с целью их идентификации и объяснения области применения;
- определять механизм реакции в зависимости от условий проведения реакции и прогнозировать возможность протекания химических реакций на основе типа химической связи и активности реагентов;
- устанавливать зависимость реакционной способности органических соединений от характера взаимного влияния атомов в молекулах с целью прогнозирования продуктов реакции;
- устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности органических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших органических веществ;

- определять характер среды в результате гидролиза органических веществ и приводить примеры гидролиза веществ в повседневной жизни человека, биологических обменных процессах и промышленности;
- обосновывать практическое использование органических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению органических веществ, относящихся к различным классам соединений, в соответствии с правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания;
- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений – при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.

Выпускник получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- интерпретировать данные о составе и строении веществ, полученные с помощью современных физико-химических методов;
- описывать состояние электрона в атоме на основе современных квантово-механических представлений о строении атома для объяснения результатов спектрального анализа веществ;
- характеризовать роль азотосодержащих гетероциклических соединений и нуклеиновых кислот как важнейших биологически активных веществ.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

- 1. Российская гражданская идентичность, патриотизм, уважение к своему народу, чувства ответственности перед родиной, гордость за свой край, свою родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн);
- 2. Гражданская позиция как активного и ответственного члена российского общества, осознающего конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего национальные и гуманистические ценности и традиционные общечеловеческие демократические ценности;
- 3. Готовность к служению отечеству, его защите;
- 4. Сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 5. Сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- 6. Толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения, способность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;
- 7. Навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно- полезной, учебно-исследовательской, творческой и др. видов деятельности;
- 8. Нравственное сознание и поведение на основе усвоения общечеловеческих ценностей;
- 9. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 10. Эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;
- 11. Принятие и реализация ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;

- 12. Бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую медицинскую помощь;
- 13. Осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- 14. Сформированность экологического мышления, понимания влиянии социально-экономических процессов па состояние природной и социальной среды. приобретение опыта экологонаправленной деятельности;
- 15. Ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни.

МЕТАПРЕДМЕТНЫЕ

Регулятивные:

- 1. Умение самостоятельно определять цели деятельности;
- 2. Умение самостоятельно составлять планы деятельности;
- 3. Самостоятельно осуществлять деятельность;
- 4. Самостоятельно контролировать деятельность;
- 5. Самостоятельно корректировать деятельность;
- 6. Использовать все возможные ресурсы для достижения поставленных целей;
- 7. Использовать все возможные ресурсы для реализации планов деятельности;
- 8. Выбирать успешные стратегии в различных ситуациях;
- 9. Умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения с учетом гражданских и нравственных ценностей;
- 10. Владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Познавательные:

- 1. Владение навыками познавательной, учебной, проектной деятельности;
- 2. Владение навыками разрешения проблем;
- 3. Владение способностью к самостоятельному поиску методов решения практических задач, к применению различных методов познания;
- 4. Готовность и способность к самостоятельной информационно познавательной деятельности;
- 5. Владение навыками получения необходимой информации из различных источников;

- 6. Критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 7. Умение определять назначение и функции институтов различных социальных институтов.

Коммуникативные:

- 1. Умение продуктивно общаться;
- 2. Умение эффективно разрешать конфликт;
- 3. Умение использовать икт для решения конкретных задач;
- 4. Соблюдение требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, информационной безопасности при использовании икт;
- 5. Владение языковыми средствами умение ясно и логично, точно излагать свою точку зрения, использовать адекватные языковые средства.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Выпускник научится:

- устанавливать причинно-следственные связи между строением атомов химических элементов и периодическим изменением свойств химических элементов и их соединений в соответствии с положением химических элементов в периодической системе;
- составлять молекулярные и структурные формулы неорганических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- характеризовать физические свойства неорганических веществ и устанавливать зависимость физических свойств веществ от типа кристаллической решетки;
- характеризовать закономерности в изменении химических свойств простых веществ, водородных соединений, высших оксидов и гидроксидов;
- приводить примеры химических реакций, раскрывающих характерные химические свойства неорганических веществ изученных классов с целью их идентификации и объяснения области применения;
- устанавливать генетическую связь между классами неорганических веществ для обоснования принципиальной возможности получения неорганических и органических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших неорганических веществ;

- определять характер среды в результате гидролиза неорганических веществ и приводить примеры гидролиза веществ в повседневной жизни человека, биологических обменных процессах и промышленности;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- обосновывать практическое использование неорганических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению неорганических веществ, относящихся к различным классам соединений, в соответствии с правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.

Выпускник получит возможность научиться:

- самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- прогнозировать возможность протекания окислительно-восстановительных реакций, лежащих в основе природных и производственных процессов.

2. Содержание учебного предмета, курса

10 класс

Тема 1. Повторение и углубление знаний

Атомно-молекулярное учение. Вещества молекулярного и немолекулярного строения. Качественный и количественный состав вещества. Молярная и относительная молекулярная массы вещества. Мольная доля и массовая доля элемента в веществе.

Строение атома. Атомная орбиталь. Правила заполнения электронами атомных орбиталей. Валентные электроны. Периодический закон. Формулировка закона в свете современных представлений о строении атома. Изменение свойств элементов и их соединений в периодах и группах.

Химическая связь. Электроотрицательность. Виды химической связи. Ионная связь. Ковалентная неполярная и полярная связь. Обменный и донорно-акцепторный механизм образования ковалентной полярной связи. Геометрия молекулы. Металлическая связь. Водородная связь. Агрегатные состояния вещества. Типы кристаллических решеток: атомная, молекулярная, ионная, металлическая.

Расчеты по формулам и уравнениям реакций. Газовые законы. Уравнение Клайперона-Менделеева. Закон Авогадро. Закон объемных отношений. Относительная плотность газов.

Классификация химических реакций по различным признакам сравнения. Изменение степени окисления элементов в соединениях. Окислительно-восстановительные реакции. Окисление и восстановление. Окислители и восстановители. Метод электронного баланса. Перманганат калия как окислитель.

Важнейшие классы неорганических веществ. Генетическая связь между классами неорганических соединений. Реакции ионного обмена. Гидролиз. pH среды.

Растворы. Способы выражения количественного состава раствора: массовая доля (процентная концентрация), молярная концентрация. Коллоидные растворы. Эффект Тиндаля. Коагуляция. Синерезис. Комплексные соединения. Состав комплексного иона: комплексообразователь, лиганды. Координационное число. Номенклатура комплексных соединений.

Демонстрации. 1. Образцы веществ молекулярного и немолекулярного строения. 2. Возгонка йода. 3. Определение кислотности среды при помощи индикаторов. 4. Эффект Тиндаля. 5. Образование комплексных соединений переходных металлов.

Лабораторные опыты. 1. Реакции ионного обмена. 2. Свойства коллоидных растворов. 3.Гидролиз солей. 4.Получение и свойства комплексных соединений.

Практическая работа №1. Выполнение экспериментальных задач по теме «Реакционная способность веществ в растворах».

Проверочная работа по теме «Основы химии».

Тема 2. Основные понятия органической химии

Предмет органической химии. Особенности органических веществ. Значение органической химии. Причины многообразия органических веществ. Углеродный скелет, его типы: циклические, ациклические. Карбоциклические и гетероциклические скелеты. Виды связей в молекулах органических веществ: одинарные, двойные, тройные. Изменение энергии связей между атомами углерода при увеличении кратности связи. Насыщенные и ненасыщенные соединения.

Электронное строение и химические связи атома углерода. Гибридизация орбиталей, ее типы для органических соединений: sp^3 , sp^2 , sp. Образование σ - и π -связей в молекулах органических соединений.

Основные положения структурной теории органических со- единений. Химическое строение. Структурная формула. Структурная и пространственная изомерия. Изомерия углеродного скелета. Изомерия положения. Межклассовая изомерия. Виды пространственной изомерии. Оптическая изомерия. Оптические антиподы. Хиральность. Хиральные и ахиральные молекулы. Геометрическая изомерия (*цис-, транс-*изомерия). Гомология. Гомологи. Гомологическая разность. Гомологические ряды.

Электронные эффекты. Способы записей реакций в органической химии. Схема и уравнение. Условия проведения реакций. Классификация реакций органических веществ по структурному признаку: замещение, присоединение, отщепление. Механизмы реакций. Способы разрыва связи углерод-углерод. Свободные радикалы, нуклеофилы и электрофилы.

Классификация органических веществ и реакций. Основные классы органических соединений. Классификация органических соединений по функциональным группам. Электронное строение органических веществ. Взаимное влияние атомов и групп атомов. Индуктивный и мезомерный эффекты. Представление о резонансе. Номенклатура органических веществ. Международная (систематическая) номенклатура органических веществ, ее принципы. Рациональная номенклатура. Окисление и восстановление в органической химии.

Демонстрации. 1. Модели органических молекул.

Тема 3. Углеводороды

Алканы. Строение молекулы метана. Понятие о конформациях. Общая характеристика класса, физические и химические свойства (горение, каталитическое окисление, галогенирование, нитрование, крекинг, пиролиз). Механизм реакции хлорирования метана. Алканы в природе. Синтетические способы получения алканов. Методы получения алканов из алкилгалогенидов (реакция Вюрца), декарбоксилированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот. Применение алканов.

Циклоалканы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов.

Алкены. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена.

Алкадиены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.

Алкины. Общая характеристика. Строение молекулы ацетилена. Физические и химические свойства алкинов. Реакции присоединения галогенов, галогеноводородов, воды. Гидрирование. Тримеризация и димеризация ацетилена. Кислотные свойства алкинов с концевой тройной связью. Ацетилиды. Окисление алкинов раствором перманганата калия. Применение ацетилена. Карбидный метод получения ацетилена. Пиролиз метана. Синтез алкинов алкилированием ацетилидов.

Арены. Понятие об ароматичности. Правило Хюккеля. Бензол — строение молекулы, физические свойства. Гомологический ряд бензола. Изомерия дизамещенных бензолов на примере ксилолов. Реакции замещения в бензольном ядре (галогенирование, нитрование, алкилирование). Реакции присоединения к бензолу (гидрирование, хлорирование на свету).

Особенности химии алкилбензолов. Правила ориентации заместителей в реакциях замещения. Бромирование и нитрование толуола. Окисление алкилбензолов раствором перманганата калия. Галогенирование алкилбензолов в боковую цепь. Реакция Вюрца—Фиттига как метод синтеза алкилбензолов. Стирол как пример непредельного ароматического соединения.

Природные источники углеводородов. Природный и попутный нефтяные газы, их состав, использование. Нефть как смесь углеводородов. Первичная и вторичная переработка нефти. Риформинг. Каменный уголь.

Генетическая связь между различными классами углеводородов. Качественные реакции на непредельные углеводороды.

Галогенопроизводные углеводородов. Реакции замещения галогена на гидроксил, нитрогруппу, цианогруппу. Действие на галогенпроизводные водного и спиртового раствора щелочи. Сравнение реакционной способности алкил-, винил-, фенил- и бензилгалогенидов. Использование галогенпроизводных в быту, технике и в синтезе. Понятие о магнийорганических соединениях. Получение алканов восстановлением йодалканов йодоводородом.

Демонстрации. 1. Бромирование гексана на свету. 2. Горение метана, этилена, ацетилена. 3. Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде. 4. Окисление толуола раствором перманганата калия. 5. Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция. 6. Получение стирола деполимеризацией полистирола и испытание его отношения к раствору перманганата калия.

Лабораторные опыты. Составление моделей молекул алканов. Взаимодействие алканов с бромом. Составление моделей молекул непредельных соединений.

Практическая работа № 2. Составление моделей молекул углеводородов.

Практическая работа № 3. Получение этилена и опыты с ним.

Контрольная работа № 1 по теме «Углеводороды».

Тема 4. Кислородсодержащие органические соединения

Спирты. Номенклатура и изомерия спиртов. Токсическое действие на организм метанола и этанола. Физические свойства предельных одноатомных спиртов. Химические свойства спиртов (кислотные свойства, реакции замещения гидроксильной группы на галоген, межмолекулярная и внутримолекулярная дегидратация, окисление, реакции углеводородного радикала). Алкоголяты. Гидролиз, алкилирование (синтез простых эфиров по Вильямсону). Промышленный синтез метанола. Многоатомные спирты. Этиленгликоль и глицерин, их физические и химические свойства. Синтез диоксана из этиленгликоля. Токсичность этиленгликоля. Качественная реакция на многоатомные спирты. Простые эфиры как изомеры предельных одноатомных спиртов. Сравнение их физических и химических свойств со спиртами. Реакция расщепления простых эфиров йодоводородом.

Фенолы. Номенклатура и изомерия. Взаимное влияние групп атомов на примере фенола. Физические и химические свойства фенола и крезолов. Кислотные свойства фенолов в сравнении со спиртами. Реакции замещения в бензольном кольце (галогенирование, нитрование). Окисление фенолов. Качественные реакции на фенол. Применение фенола.

Карбонильные соединения. Электронное строение карбонильной группы. Альдегиды и кетоны. Физические свойства формальдегида, ацетальдегида, ацетона. Реакции присоединения воды, спиртов, циановодорода и гидросульфита натрия. Сравнение реакционной способности альдегидов и кетонов в реакциях присоединения. Реакции замещения атомов водорода при α-углеродном атоме на галоген. Полимеризация формальдегида и ацетальдегида. Окисление карбонильных соединений. Сравнение окисления альдегидов и кетонов. Восстановление карбонильных соединений в спирты. Качественные реакции на альдегидную группу. Особенности формальдегида. Реакция формальдегида с фенолом.

Карбоновые кислоты. Электронное строение карбоксильной группы. Гомологический ряд предельных одноосновных карбоновых кислот. Физические свойства карбоновых кислот на

примере муравьиной, уксусной, пропионовой, пальмитиновой и стеариновой кислот. Химические свойства карбоновых кислот. Кислотные свойства (изменение окраски индикаторов, реакции с активными металлами, основными оксидами, основаниями, солями). Изменение силы карбоновых кислот при введении донорных и акцепторных заместителей. Взаимодействие карбоновых кислот со спиртами (реакция этерификации). Галогенирование карбоновых кислот в боковую цепь. Особенности муравьиной кислоты. Важнейшие представители класса карбоновых кислот и их применение. Получение муравьиной и уксусной кислот в промышленности. Высшие карбоновые кислоты. Щавелевая кислота как представитель дикарбоновых кислот. Представление о непредельных и ароматических кислотах. Особенности их строения и свойств. Значение карбоновых кислот.

Функциональные производные карбоновых кислот. Получение хлорангидридов и ангидридов кислот, их гидролиз. Получение сложных эфиров с использованием хлор- ангидридов и ангидридов кислот. Сложные эфиры как изомеры карбоновых кислот. Сравнение физических свойств и реакционной способности сложных эфиров и изомерных им карбоновых кислот. Гидролиз сложных эфиров. Синтез сложных эфиров фенолов. Сложные эфиры неорганических кислот. Нитроглицерин. Амиды. Соли карбоновых кислот, их термическое разложение в присутствии щелочи. Синтез карбонильных соединений разложением кальциевых солей карбоновых кислот.

Демонстрации. 1. Взаимодействие натрия с этанолом. 2. Окисление этанола оксидом меди. 3. Горение этанола. 4. Взаимодействие *трет*-бутилового спирта с соляной кислотой. 5. Йодоформная реакция. 6. Качественная реакция на многоатомные спирты. 7. Качественные реакции на фенолы. 8. Определение альдегидов при помощи качественных реакций. 9.Окисление альдегидов перманганатом калия. 10. Получение сложных эфиров.

Лабораторные опыты. 5. Свойства этилового спирта. 6. Свойства глицерина. 7. Свойства фенола. Качественные реакции на фенолы. 8. Свойства формалина. 9. Свойства уксусной кислоты. 10. Соли карбоновых кислот.

Практическая работа № 4. Получение бромэтана.

Практическая работа № 5. Получение ацетона.

Практическая работа № 6. Получение уксусной кислоты.

Практическая работа № 7. Получение этилацетата.

Практическая работа № 8. Решение экспериментальных задач по теме «Кислородсодержащие органические вещества».

Контрольная работа № 2 по теме «Кислородсодержащие органические вещества».

Тема 5. Азот- и серосодержащие соединения

Амины. Изомерия аминов. Первичные, вторичные и третичные амины. Физические свойства простейших аминов. Амины как органические основания. Соли алкиламмония. Алкилирование и

ацилирование аминов. Реакции аминов с азотистой кислотой. Ароматические амины. Анилин. Взаимное влияние групп атомов в молекуле анилина. Химические свойства анилина (основные свойства, реакции замещения в ароматическое ядро, окисление). Получение аминов из спиртов и нитросоединений. Применение анилина.

Сероорганические соединения. Представление о сероорганических соединениях. Особенности их строения и свойств. Значение сероорганических соединений.

Гетероциклы. Фуран и пиррол как представители пятичленных гетероциклов. Электронное строение молекулы пиррола. Кислотные свойства пиррола. Пиридин как представитель шестичленных гетероциклов. Электронное строение молекулы пиридина. Основные свойства пиридина, реакции замещения с ароматическим ядром. Представление об имидазоле, пиридине, пурине, пуриновых и пиримидиновых основаниях.

Демонстрации. 1. Основные свойства аминов. 2. Качественные реакции на анилин. 3. Анилиновые красители. 4. Образцы гетероциклических соединений.

Лабораторные опыты. Качественные реакции на анилин.

Практическая работа № 9. Решение экспериментальных задач по теме «Азотсодержащие органические вещества».

Тема 6. Биологически активные вещества

Жиры как сложные эфиры глицерина и высших карбоновых кислот. Омыление жиров. Гидрогенизация жиров. Мыла как соли высших карбоновых кислот.

Углеводы. Моно- и дисахариды. Функции углеводов. Биологическая роль углеводов. Глюкоза — физические свойства, линейная и циклическая формы. Реакции глюкозы (окисление азотной кислотой, восстановление в шестиатомный спирт), качественные реакции на глюкозу. Брожение глюкозы. Фруктоза как изомер глюкозы. Рибоза и дезоксирибоза.

Дисахариды. Сахароза как представитель не восстанавливающих дисахаридов. Гидролиз дисахаридов. Получение сахара из сахарной свеклы.

Полисахариды. Крахмал, гликоген, целлюлоза. Качественная реакция на крахмал. Гидролиз полисахаридов.

Нуклеиновые кислоты. Нуклеозиды. Нуклеотиды. Нуклеиновые кислоты как природные полимеры. Строение ДНК и РНК. Гидролиз нуклеиновых кислот.

Аминокислоты как амфотерные соединения. Реакции с кислотами и основаниями. Образование сложных эфиров. Пептиды. Пептидная связь. Амидный характер пептидной связи. Гидролиз пептидов. Белки. Первичная, вторичная и третичная структуры белков. Качественные реакции на белки.

Демонстрации. 1. Растворимость углеводов в воде и этаноле. 2. Качественные реакции на глюкозу. 3. Образцы аминокислот.

Лабораторные опыты. 11.Свойства глюкозы. Качественная реакция на глюкозу. Определение крахмала в продуктах питания. 12. Цветные реакции белков.

Проверочная работа по теме «Азотсодержащие и биологически активные органические вещества».

Тема 7. Высокомолекулярные соединения

Понятие о высокомолекулярных веществах. Полимеризация и поликонденсация как методы создания полимеров. Эластомеры. Природный и синтетический каучук. Сополимеризация. Современные пластики (полиэтилен, полипропилен, полистирол, поливинилхлорид, фторопласт, полиэтилентерефталат, акрил-бутадиен-стирольный пластик, поликарбонаты). Природные и синтетические волокна (обзор).

Демонстрации. 1. Образцы пластиков. 2. Коллекция волокон. 3. Поликонденсация этиленгликоля с терефталевой кислотой.

Лабораторные опыты. 13. Отношение синтетических волокон к растворам кислот и щелочей.

Практическая работа № 10. Распознавание пластиков.

Практическая работа № 11. Распознавание волокон.

Итоговая контрольная работа.

11 класс

Тема 1. Неметаллы

Классификация неорганических веществ. Элементы металлы и неметаллы и их положение в Периодической системе.

Водород. Получение, физические и химические свойства (реакции с металлами и неметаллами, восстановление оксидов и солей). Гидриды. Топливные элементы.

Галогены. Общая характеристика подгруппы. Физические свойства простых веществ. Закономерности изменения окислительной активности галогенов в соответствии с их положением в периодической таблице. Порядок вытеснения галогенов из растворов галогенидов. Особенности химии фтора. Хлор — получение в промышленности и лаборатории, реакции с металлами и неметаллами. Взаимодействие хлора с водой и растворами щелочей. Кислородные соединения хлора. Гипохлориты, хлорат и перхлораты как типичные окислители. Особенности химии брома и йода. Качественная реакция на йод. Галогеноводороды — получение, кислотные и восстановительные свойства. Соляная кислота и ее соли. Качественные реакции на галогенид-ионы.

Элементы подгруппы кислорода. Общая характеристика подгруппы. Физические свойства простых веществ. Озон как аллотропная модификация кислорода. Получение озона. Озон как окислитель. Позитивная и негативная роль озона в окружающей среде. Сравнение свойств озона и

кислорода. Вода и пероксид водорода как водородные соединения кислорода — сравнение свойств. Пероксид водорода как окислитель и восстановитель. Пероксиды металлов. Сера. Аллотропия серы. Физические и химические свойства серы (взаимодействие с металлами, кислородом, водородом, растворами щелочей, кислотами-окислителями). Сероводород — получение, кислотные и восстановительные свойства. Сульфиды. Сернистый газ как кислотный оксид. Окислительные и восстановительные свойства сернистого газа. Получение сернистого газа в промышленности и лаборатории. Сернистая кислота и ее соли. Серный ангидрид. Серная кислота. Свойства концентрированной и разбавленной серной кислоты. Действие концентрированной серной кислоты на сахар, металлы, неметаллы, сульфиды. Термическая устойчивость сульфатов. Качественная реакция на серную кислоту и ее соли.

Азот и его соединения. Элементы подгруппы азота. Общая характеристика подгруппы. Физические свойства простых веществ. Строение молекулы азота. Физические и химические свойства азота. Получение азота в промышленности и лаборатории. Нитриды. Аммиак — его получение, физические и химические свойства. Основные свойства водных растворов аммиака. Соли аммония. Поведение солей аммония при нагревании. Аммиак как восстановитель. Применение аммиака. Оксиды азота, их получение и свойства. Оксид азота(I). Окисление оксида азота (II) кислородом. Димеризация оксида азота (IV). Азотистая кислота и ее соли. Нитриты как окислители и восстановители. Азотная кислота — физические и химические свойства, получение. Отношение азотной кислоты к металлам и неметаллам. Зависимость продукта восстановления азотной кислоты от активности металла и концентрации кислоты. Термическая устойчивость нитратов.

Фосфор и его соединения. Аллотропия фосфора. Химические свойства фосфора (реакции с кислородом, галогенами, металлами, сложными веществами-окислителями, щелочами). Получение и применение фосфора. Фосфорный ангидрид. Ортофосфорная и метафосфорная кислоты и их соли. Качественная реакция на ортофосфаты. Фосфиды. Фосфин.

Углерод. Аллотропия углерода. Сравнение строения и свойств графита и алмаза. Фуллерен как новая молекулярная форма углерода. Графен как монослой графита. Углеродные нанотрубки. Уголь. Активированный уголь. Адсорбция. Химические свойства угля. Карбиды. Гидролиз карбида кальция и карбида алюминия. Карбиды переходных металлов как сверхпрочные материалы. Оксиды углерода. Образование угарного газа при неполном сгорании угля. Уголь и угарный газ как восстановители. Реакция угарного газа с расплавами щелочей. Синтез формиатов и оксалатов. Углекислый газ. Угольная кислота и ее соли. Поведение средних и кислых карбонатов при нагревании.

Кремний. Свойства простого вещества. Реакции с хлором, кислородом, растворами щелочей. Оксид кремния в природе и технике. Кремниевые кислоты и их соли. Гидролиз силикатов. Силан — водородное соединение кремния.

Бор. Оксид бора. Борная кислота и ее соли. Бура.

Демонстрации. 1. Горение водорода. 2. Получение хлора (опыт в пробирке). 3. Опыты с бромной водой. 4. Окислительные свойства раствора гипохлорита натрия. 5. Плавление серы. 6. Горение серы в кислороде. 7. Взаимодействие железа с серой. 8. Горение сероводорода. 9. Осаждение сульфидов. 10. Свойства сернистого газа. 11. Действие концентрированной серной кислоты на медь и сахарозу. 12. Растворение аммиака в воде. 13. Основные свойства раствора аммиака. 14. Каталитическое окисление аммиака. 15. Получение оксида азота (II) и его окисление на воздухе. 16. Действие азотной кислоты на медь. 17. Горение фосфора в кислороде. 18. Превращение красного фосфора в белый и его свечение в темноте. 19. Взаимодействие фосфорного ангидрида с водой. 20. Образцы графита, алмаза, кремния. 21. Горение угарного газа. 22. Тушение пламени углекислым газом. 23. Разложение мрамора.

Лабораторные опыты. 1.Получение хлора и изучение его свойств. 2. Ознакомление со свойствами хлорсодержащих отбеливателей. Качественная реакция на галогенид-ионы. 3. Свойства брома, йода и их солей. Разложение пероксида водорода. Окисление иодид-ионов пероксидом водорода в кислой среде. 4.Изучение свойств серной кислоты и ее солей. 5.Изучение свойств водного раствора аммиака. 6. Свойства солей аммония. Качественная реакция на фосфат-ион. 7. Качественная реакция на карбонат-ион. Разложение гидрокарбоната натрия. 8. Испытание раствора силиката натрия индикатором. 9. Ознакомление с образцами природных силикатов.

Практическая работа № 1. Получение водорода.

Практическая работа № 2. Получение хлороводорода и соляной кислоты.

Практическая работа № 3. Получение аммиака и изучение его свойств.

Практическая работа № 4. Получение углекислого газа.

Практическая работа № 5. Выполнение экспериментальных задач по теме «Неметаллы». Контрольная работа № 1 по теме «Неметаллы».

Тема 2. Металлы

Общий обзор элементов—металлов. Свойства простых веществ-металлов. Металлические кристаллические решетки. Сплавы. Характеристика наиболее известных сплавов. Получение и применение металлов.

Щелочные металлы— общая характеристика подгруппы, характерные реакции натрия и калия. Свойства щелочных металлов. Получение щелочных металлов. Сода и едкий натр — важнейшие соединения натрия.

Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений.

Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов.

Алюминий. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия.

Олово и свинец. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова (II) и свинца (II). Свинцовый аккумулятор.

Металлы побочных подгрупп. Особенности строения атомов переходных металлов.

Хром. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления. Амфотерные свойства оксида и гидроксида хрома (III). Окисление солей хрома (III) в хроматы. Взаимные переходы хроматов и дихроматов. Хроматы и дихроматы как окислители.

Марганец — физические и химические свойства (отношение к кислороду, хлору, растворам кислот). Оксид марганца (IV) как окислитель и катализатор. Перманганат калия как окислитель.

Железо. Нахождение в природе. Значение железа для организма человека. Физические свойства железа. Сплавы железа с углеродом. Химические свойства железа (взаимодействие с кислородом, хлором, серой, углем, кислотами, растворами солей). Сравнение кислотно-основных и окислительно-восстановительных свойств гидроксида железа (II) и гидроксида железа (III). Соли железа (III) и железа (III). Методы перевода солей железа (II) в соли железа (III) и обратно. Окислительные свойства соединений железа (III) в реакциях с восстановителями (иодидом, медью). Цианидные комплексы железа. Качественные реакции на ионы железа (II) и (III).

Медь. Нахождение в природе. Физические и химические свойства (взаимодействие с кислородом, хлором, серой, кислотами-окислителями). Соли меди (II). Медный купорос. Аммиакаты меди (I) и меди (II). Получение оксида меди (I) восстановлением гидроксида меди (II) глюкозой.

Серебро. Физические и химические свойства (взаимодействие с серой, хлором, кислотамиокислителями). Осаждение оксида серебра при действии щелочи на соли серебра. Аммиакаты серебра как окислители. Качественная реакция на ионы серебра.

Золото. Физические и химические свойства (взаимодействие с хлором, «царской водкой». Способы выделения золота из золотоносной породы.

Цинк. Физические и химические свойства (взаимодействие с галогенами, кислородом, серой, растворами кислот и щелочей). Амфотерность оксида и гидроксида цинка.

Ртуть. Представление о свойствах ртути и ее соединениях.

Демонстрации. 1. Коллекция металлов. 2. Коллекция минералов и руд. 3. Коллекция «Алюминий». 4. Коллекция «Железо и его сплавы» 5. Взаимодействие натрия с водой. 6. Окрашивание пламени солями щелочных и щелочноземельных металлов. 7.Взаимодействие кальция с водой. 8.Плавление алюминия. 9. Взаимодействие алюминия со щелочью. 10. Взаимодействие хрома с соляной кислотой без доступа воздуха. 11. Осаждение гидроксида хрома (ІІІ) и окисление его пероксидом водорода. 12. Взаимные переходы хроматов и дихроматов. 13. Разложение дихромата аммония. 14. Алюмотермия. 15. Осаждение гидроксида железа (ІІІ) и окисление его на воздухе. 16. Выделение серебра из его солей действием меди.

Лабораторные опыты. 10. Окрашивание пламени соединениями щелочных металлов. 11. Ознакомление с минералами и важнейшими соединениями щелочных металлов. 12.Свойства соединений щелочных металлов. 13. Окрашивание пламени солями щелочноземельных металлов. 14. Свойства магния и его соединений. 15.Свойства соединений кальция. 16.Жесткость воды. 17. Взаимодействие алюминия с кислотами и щелочами. 18. Амфотерные свойства гидроксида алюминия. 19.Свойства солей хрома. 20. Свойства марганца и его соединений. 21. Изучение минералов железа. 22. Свойства железа. Качественные реакции на ионы железа. Получение оксида меди (I). 23. Свойства меди, ее сплавов и соединений. 24. Свойства цинка и его соединений.

Практическая работа № 6. Получение горькой соли (семиводного сульфата магния).

Практическая работа № 7. Получение алюмокалиевых квасцов.

Практическая работа № 8. Выполнение экспериментальных задач по теме «Металлы главных подгрупп».

Практическая работа № 9. Получение медного купороса. Практическая работа № 10. Получение железного купороса.

Практическая работа № 11. Выполнение экспериментальных задач по теме «Металлы побочных подгрупп».

Контрольная работа № 2 по теме «Металлы».

Тема 3. Строение атома. Химическая связь.

Строение атома. Нуклиды. Изотопы. Типы радиоактивного распада. Термоядерный синтез. Получение новых элементов. Ядерные реакции. Строение электронных оболочек атомов. Представление о квантовой механике. Квантовые числа. Атомные орбитали. Радиус атома. Электроотрицательность.

Химическая связь. Виды химической связи. Ковалентная связь и ее характеристики (длина связи, полярность, поляризуемость, кратность связи). Ионная связь. Металлическая связь.

Строение твердых тел. Кристаллические и аморфные тела. Типы кристаллических решеток металлов и ионных соединений. Межмолекулярные взаимодействия. Водородная связь.

Демонстрации. 1. Кристаллические решетки. 2. Модели молекул.

Тема 4. Основные закономерности протекания химических реакций

Тепловой эффект химической реакции. Эндотермические и экзотермические реакции. Закон Гесса. Теплота образования вещества. Энергия связи. Понятие об энтальпии.

Понятие об энтропии. Второй закон термодинамики. Энергия Гиббса и критерии самопроизвольности химической реакции.

Скорость химических реакций и ее зависимость от природы реагирующих веществ, концентрации реагентов, температуры, наличия катализатора, площади поверхности реагирующих веществ. Закон действующих масс. Правило Вант- Гоффа. Понятие об энергии активации и об энергетическом профиле реакции. Гомогенный и гетерогенный катализ. Примеры каталитических процессов в технике и в живых организмах. Ферменты как биологические катализаторы.

Обратимые реакции. Химическое равновесие. Принцип Ле-Шателье. Константа равновесия. Равновесие в растворах. Константы диссоциации. Расчет рН растворов сильных кислот и щелочей.

Ряд активности металлов. Понятие о стандартном электродном потенциале и электродвижущей силе реакции. Химические источники тока: гальванические элементы, аккумуляторы и топливные элементы. Электролиз расплавов и водных растворов электролитов.

Демонстрации. 1. Экзотермические и эндотермические химические реакции. 2. Тепловые явления при растворении серной кислоты и аммиачной селитры. 3. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. 4. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. 5. Разложение пероксида водорода с помощью неорганических катализаторов и природных объектов, содержащих каталазу.

Лабораторные опыты. Факторы, влияющие на взаимодействие металла с растворами кислот. Смещение химического равновесия при увеличении концентрации реагентов и продуктов. 26. Каталитическое разложение пероксида водорода

Практическая работа № 12. Скорость химической реакции.

Практическая работа № 13. Химическое равновесие.

Контрольная работа № 3. Теоретические основы химии.

Тема 5. Химическая технология

Основные принципы химической технологии. Производство серной кислоты контактным способом. Химизм процесса. Сырье для производства серной кислоты. Технологическая схема процесса, процессы и аппараты.

Производство аммиака. Химизм процесса. Определение оптимальных условий проведения реакции. Принцип циркуляции и его реализация в технологической схеме.

Металлургия. Черная металлургия. Доменный процесс (сырье, устройство доменной печи, химизм процесса). Производство стали в кислородном конвертере и в электропечах.

Органический синтез. Производство метанола.

Экология и проблема охраны окружающей среды. Зеленая химия.

Демонстрации. 1. Сырье для производства серной кислоты. 2. Модель кипящего слоя. 3. Железная руда. 4. Образцы сплавов железа.

Тема 6. Химия в быту и на службе общества

Химия пищи. Жиры, белки, углеводы, витамины. Пищевые добавки, их классификация. Запрещенные и разрешенные пищевые добавки. Лекарственные средства. Краски и пигменты. Принципы окрашивания тканей. Химия в строительстве. Цемент, бетон. Стекло и керамика. Традиционные и современные керамические материалы. Сверхпроводящая керамика. Бытовая химия. Отбеливающие средства. Химия в сельском хозяйстве. Инсектициды и пестициды. Средства защиты растений. Репелленты.

Особенности современной науки. Методология научного исследования. Поиск химической информации.

Демонстрации. 1. Пищевые красители. 2. Крашение тканей. 3. Отбеливание тканей. 4. Керамические материалы. 5. Цветные стекла. 6.Коллекция средств защиты растений. 7.Коллекция «Топливо и его виды». 8. Примеры работы с химическими базами данных.

Лабораторные опыты. 27. Знакомство с моющими средствами. Знакомство с отбеливающими средствами. 28. Клеи. 29. Знакомство с минеральными удобрениями и изучение их свойств.

Практическая работа № 14. Крашение тканей.

Практическая работа № 15. Определение минеральных удобрений.

3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

Согласно программе, на изучение химии на уровне среднего общего образования (углубленный уровень) отводится 210 часов.

В соответствии с учебным планом МБОУ Школы № 73 химии на уровне среднего общего образования (углубленный уровень) предусмотрено в объеме 204 часа. Часы распределены следующим образом

Класс	Количество	часов	Количество часов в год
	в неделю		
10 класс	3 часа		102 часа
11 класс	3 часа		102 часа
Всего			204

10 класс

№	Название тем	Всего часов	В том числе на:		КЭС
			уроки	контрольные работы	код элемента содержания
1	Повторение и углубление знаний	18	18	0	1.1, 1.3, 1.4, 4.3.1, 4.3.8, 4.3.9
2	Основные понятия органической химии	13	13	0	3.1, 3.2
3	Углеводороды	25	24	1	1.4.10, 3.2, 3.3, 3.4, 3.9, 4.1.5, 4.1.7, 4.2.3, 4.3.7
4	Кислородсодержащие органические соединения	20	19	1	3.5, 3.6, 3.9, 4.1.5, 4.1.8, 4.2.4, 4.3.7
5	Азот- и серосодержащие соединения	7	7	0	3.7, 3.9, 4.1.5, 4.1.8, 4.2.4, 4.3.7
6	Биологически активные вещества	14	14	0	3.8
7	Высокомолекулярные соединения	5	4	1	4.2.4

11 класс

№	Название тем	Всего часов	В том числе на:		КЭС
			уроки	контрольные работы	код элемента содержания
1	Неметаллы	31	30	1	1.2.4, 2.3, 2.4, 2.6, 2.8
2	Металлы	30	29	1	1.2.2, 1.2.3, 2.2, 2.4, 2.5, 2.7
3	Строение атома. Химическая связь	8	8	0	1.3
4	Основные закономерности протекания химических реакций	17	16	1	1.4
5	Химическая технология	7	7	0	4.2.1, 4.2.2
6	Химия в быту и на службе общества	9	9	0	4.2.5